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TIME AND PRODUCTION SYSTEMS

Richard M. Salter

Drexel University

ABSTRACT

—> The utility of rule based produétion systems seems to be in

the ability to model domains consisting of independent
states and actions, in which process interaction is minimal.
This methodology 1is suitable for domains outside of the
realm of human information processing, in particular, in
representing domains of continuous processes. We apply it
to the design of a world modeling system, where objects and
relationships are observed over time. 'We consider the
effects of embedding time into a rule based system, where
individual productions represent instantaneous events which
are grouped together to form processes. We illustrate by
discussing a particular implementation, the language CONCUR.
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f TIME AND PRODUCTION SYSTEMS

1. Introduction

The production system methodology has been successfully
used in the design of systems to solve various problems in
Artificial Intelligence, including expert systems, planning
and problem solving, and theorem proving [Ni80]. It has
E been suggested that production systems are able to make more
F general use of the knowledge embedded within them because
, they 1lack a prior procedural oriéntation towards this

knowledge. As a result, such systems are especially useful

in modeling domains in which a strong procedural correlation
of data would not naturally appear [Da76]. The production
system is therefore an appropriate tool in the design of
models for systems of independent processes whose
interactions can be defined in terms system state, An

example of this sort of application can be found in [ZisT76]1,

in which a modified production system is used to model the
independent asynchronous concurrent processes which are part

of an office environment.

In general, we would like to consider the impact of the
production system methodology or the design of "world
models", that is, sets of objects and relationships that
vary over time. Such a model 1is used, for example, in

discrete robot planning systems such as STRIPS ([Fi72]. Ve

are particularly interested in the use of production systems

in the implementation of the symbolic discrete event
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simulation [Zie76) system described in [HeT3] and [Lo77]. A
principal feature of this simulation technique 1is 1its
ability to model continuous and concurrent processes using

operators acting on data structure representing the state of

TR TN
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the world. A rule based model seems appropriate since the
evolution of the domain in time depends both on continuously
changing parameters, and on the action. of discrete
asynchronous events. The preconaition-state transformation
structure for rules permits the modeling of discrete events
as a conditional set of actions. Processes, with which we
associate duration, can be composed of sequences of events
occurring at well defined times. A rule based system seems
to be the natural representation of a set of loosely coupled

processes whose interactions come about indirectly as a

. w-"..w.hu‘— ’ e

result of their effects on the system state.

S

Certain other advantages of rule based systems secem to
reinfdrce its applicability to this problem domain. The

large degree or modularity of simulation programs written

. using a rule based system would allow the user easy access

| to the various complexities of the modeled world. The
control structure permits the actions of different processes

- to interleave arbitrarily without prior control
| specification by the user., Processes can be maintained as
unified activities without resorting to procedural

representations, and so permitting a larger range of

possible interactions.
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In this paper we will discuss the design of a rule
based simulation system. The principal feature from the
point of view of production system methodology 1is the
introduction of a continuous term, in this case time, as a
state parameter. We will discuss how knowledge about time
can be embedded into a rule based system; how such
knowledge affects the structure of the database, the rule
set, and the system control structure. The techniques
described in this paper have been used to implement the
CONCUR world modeling system [Sal80], which is based upon
the ideas first presented in [He73]. We will 1illustrate
using CONCUR and a sample world, containing a robot, a
bucket, and a water tap, which has béen discussed in detail

in [He73], [Lo77], and [Sal80] (see Figure 1).

2. Domain Representation

The skeletal structure of the CONCUR system is close to
the classical production system formulation. Scenarios
(rules) contain initiation conditions (antecedents) which
are logical templates representing a set of possible states
of the world model database. An event occurs when the
initiation conditions of some scenario are successfully
matched against the world, and the instantaneous effects

(consequents) of an event can alter the database and the

scenario set.

o amathnnn e mn.
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As in the planning system STRIPS (Fi721], the
representation of the world model consists of a set of
relations which are declarative and state-dependent. Unlike
STRIPS, many attributes describe the world using numerical
parameters. Thus (AT ROBBY 10), (AT TAP 15), (GOTO ROBBY
15), (GRASPING ROBBY PAIL), (CONTENTS PAIL 10) can be used
to define the state of the world in terms of attribute value
parameters. The database can always be used to obtain a

shapshot of the world at some point in model time.

In any model there will generally be attributes whose
values are not constant in time. We can represent those
attributes by extending the syntactic range of the attribute
values to include expressions. Thus, in CONCUR syntax, (AT
ROBBY (* (PLUS (TIMES 3 (SUB TIME 3.1)) 10))) 1is also a
legal entry, which can be interpreted as a trajectory for
the location of a robot ROBBY over some range of model times
(the free Qariable TIME refers to the model clock).
Evaluating these expressions using the current model time
produces the snapshot value of the world. This syntax
permits the representation of an infinite number of
individual states of infinitesimal duration as extensional

knowledge within the database.

The active components of the system are a set of
STRIPS-type rules representing instantaneous changes to the
world. These "events" are organized into sequential

: processes by scenarios which are, in effect, "“super rules"
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whose preconditions coincide with the precoﬁditions of the
first event in the process, and whose effects are mapped out
over time. For example, the GOTO scenario consists of two
events which correspond to the beginning and end of the
process of moving from one location to another. The first
event starts thé motion by inserting an expression into the
location attribute, and the second stops it by replacing the
expression with a constant. The actual motion can be
conceptualized as a state of the system, as represented by
the expression itself. This paradigm allows us to define a
process occuring over some time duration in terms of the
instantaneous changes to the trajectories of the parameters
affected by process. The world model itself is then defined
by a set of parameters whose trajectories are modified at
discrete points in time by sequences of instantaneous

actions.

In CONCUﬁ, the TIME parameter is wultimately the only
variable appearing in database expressions. This is because
scenarios creating expressions unwind all other variables
instantiated in the matching process until their (possibly
time dependent) values are arrived at. The template for
creating the above item could be (AT ®ROBOT (!* (PLUS (TIMES
SSPEED (SUB TIME *TIME)) *LOC))), where ROBOT, SPEED and LOC
are bound by initiation conditions, and *TIME refers to the
current point in model time (i.e. the time at which the
expression is being created). We create the new database

item by "quasi~-quoting" (also known _as  "backquote", see
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{Ch80)) this expression. This means éhat only terms

preceeded by an asterisk are evaluated. The evaluation of

W
-

such terms 1is complete in the current model, i.e. if any

term encountered in the evaluation process evaluates to a

C T elee SRR s IR

formula, then that formula is alsc evaluated. The "}#v |
preceeding the -new expression serves to  "quote" the
asterisk, so that it will be pgssed into the new assertion
representing an evaluation call for the entire expression.
Templates such as these permit new trajectories to be
contingent on the values of attributes at the point in time

at which the event creating the trajectories occurs.

The use of discrete events to redefine trajectories
gives rise to time functions which are composed of piecewise
smooth curves. It is possible to approximate the behavior
of complex time functions with piecewise definitions using
only a 1limited set of expressions by correcting the
trajectories .after small time intervals. We can, for
example, approximate the sinusoidal ¢time function of the ﬂ
simple harmonic motion of a spring using only polynomial

expressions by feeding back position and accelleration data

e

through discrete events occuring at fixed time intervals

RN

(see Figure 2). The complexity of the resulting
approximations depends upon the repetoire of expressions
permitted in the database, The set of allowable expressions

is, however, 1limited by the control structure, as we shall

: see below.
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3. Control Structure

In CONCUR, sets of sequentially ordered -events are

represented in a single scenario. The initiation conditions

of the scenario are the preconditions of the first event of
the process. When a scenario is invoked, this first event
is fired, and a new scenario is created (if necessary)
representing the rest of the process. The details of this
representation are given below. Scenarios act as scripts
for processes which may involve numerous events over some 1
period of time. In most cases, representing processes using
a single syntactic unit simplifies the model by permitting
the logical grouping of sets of events that contribute to a

single activity.

As we are dealing with a simulation system we shall
only consider a control structure running in the forward
mode. In the dual problem of planning, which is also under
consideration, a more general control structure is required
(more on this below). The basic cycle classically selects a

single rule to invoke and re-evaluates the state of the

system on each iteration. Since this state is parameterized
by time, it becomes a required part of the selection process
to determine when, in terms of the model clock, an event is
to occur, and to order the selection in terms of these

times.

e
o = — i . ol Tttt e g
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This knowledge is embedded in the initiation conditions

S 1S

of a scenario both directly and indirectly. Initiation

)

conditions are boolean expressions whose terms are either
templates to be matched against the database, or predicate
expressions which are to be evaluated in the environment
produced by the match. The variable TIME is global to all
: such environments, and Eefers to current model time. It |is
; thus possible to include a term such as (EQ TIME 10.2), from
which it is easy to infer the invocation time of the event,

but any scenario containing such a precondition is clearly

of limited use. Other, more indirect terms such as (EQ LOC1
LOC2) or (LT LOC1 LOC2) will set bounds on invocation times.

When all arguments to such predicates are constants, it is

£
’§ ' ‘ possible to infer that either they are satisfied in the
current state, or some prior event must occur before they

ever will become true. In the search for the next event,

A

this analysis permits certain events to be ruled out. The
more interesting case is when one or more of the arguments
is represented by an expression, as we can now prédict an
exact time or interval c¢f viability by solving similtaneous
equations and/or inequalities. The pattern matcher is

~» : -

b extended to include these more complex criteria.

. In CONCUR, each instantiation of the initiation
condition variables. represents a potehtial event. During
the matching process all predicate terms with variables

bound to formulas remain unevaluated and are stored as part

proves

of the match environment. The result of a successful match

—— e - . ey, NPy
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will include a set of bindings and possibly a set of
equations and inequalities whose simultaneous solution will
yield a time at which all conditions will be satisfied. An
equation solver 1is wused to determine a time interval
(assuming consistency) during which the event may take
place. Each potential event is therefore stamped with its
earliest 1itiaiton time. ~The limitation on the
mathematical content of the time expressions is imposed only
by the capability of the equation solver. The problem of

determining the set of equations to solve 1is entirely

syntactic.
The initial part of the control cycle consi: of
associating binding sets with initiation times to de :- .ne

the next event. 1t is possible that more than one event
will be stamped with the same earliest time. Any such group
of events can be regarded, from the point of view of the
model, as pétentially simultaneous. The way in which this
is handled is a very important property of the model, and a
thorough discussion is beyond the scope of this paper. It
is worthwhile to note that to some extent this is a function
of the application; for example one may want to follow all
possible evolutions. It is not unrealistic to consider even
a simple nondeterministic selection 1if the properties
resulting from the choice are appropriate for the domain
being modeled. It is useful, whenever possible, to design
events which commute, so that conflict resolution will

impact only those 1instances which  are crucial to the
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underlying model.

In the current CONCUR implementation, the scenario set
has a static total ordering. Among potential events with
the same earliest initiation time, the one associated with
the 1least scenario in the total order is chosen., If more
than one next event is associated with the same scenario,
then the choice is nondeterministic (actually it is
determined by the order in which the events were encountered
by thé pattern matcher, but there is no way that this can be
controlled). The advantage of this is that by searching the
scenario space in order, we can conclude the search
immediately if any scenario binds an event which c¢an
initiate at the current model time. In any schemz2 for
conflict resolution, the first criterion will always be

initiation time.

When an event is chosen, the model cl-ck is set to 1its
initiation time (possibly the current time) and the body of
its scenario is processed. The changec made by the invoked
rule are specified using add and delete functions. If the
process defined by the scenario contains additional events,
then a new scenario is inserted representing the remainder
of the process. A single control statement, CONTINU (called
RESUME in 7Sal801), 1is wused to s-parate the events of a
given process, and appears in the scenario following the

database changes. The format for a CONTINU argument is the

scenario defining the rest of the process. The process will




y TIME AND PRODUCTION SYSTEMS Page 11

7
b

not alter the database again until the preconditions of this
scenario are satisfied. This scenario is placed in the
séenario set and remains there until it is activated once
({Wat74]) discusses the idea of rules creating new rules),.
In order for the new scenario to be able to refer to the
bindings of this activation, we close the new scenario in
that environment (see.[St7u] for a discussion of the use of
closures to implement class instances). Closed scenarios

replace the control blocks used in [He73] and [(Lo77) as the

activation record of a given process. Note that the
contents of the executable part of a CONTINU argument may
contain another CONTINU, aliowing a single scenario to
specify a sequénce of events mapped out over time. (Clearly
some sort of recursive specification is actually required

here to express a possibly unbounded set of recurring

events. This would involve a small extension ¢to the
implementation, but we have not vyet settled on the

appropriate syntax for expressing such a capability).

4, Conclusion

We have described a methodology for the design of world

models which represent time dependent attributes as

arithmetic expressiéns, and have used the production system

formalism to manipulate this structure to produce discrete
event simulations of continuous processes. Our

representation presents processes as sequences of
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instantaneous state changes, with the intervening continuous
aspects represented directly in the database. This concept
yields a uniform set of active functions (events), described
simply by add-delete lists. which can create closures that
serve as control blocks. Although individual events are
tied together at a higher level, from the point of view of
the database actions are discrete and correspond to the
firing of production rules. It is in fact notable that the
basic cycle of event driven simulation [Fr77, p.18) is
analogous to the production sy§tem control structure once

the mechanism for updating model time is introduced.

Qur work in simulation 1is currently dealing with

processes whose events need not necessarily be linearly

N e

ordered. This situation was dealt with in [Zis77] wusing
Petri nets to describe the relationships between events. In

such a system scenarios are used only to describe individual

instantaneous events, while more complex procedural

-y — -

structures are used to organize these events into processes.
Although ultimately events are fired in some total order,
the user is freed from necessarily specifying that order a
priori. We believe that this will give the user a larger

degree of expressiveness in designing complex processes,

I With world models we are dealing with numerous
independent entities tied together by complex relationships
and operated upon by independent processes. While the

current application has been In the area of simulation,

Sk R |
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there is no reason why the same basic structure cannot be
used for other aspects of modeling, in particular to
implement planning systems that are cognizent of model time.
Such a system would require sets of rules which are dual to
'the events described above. The biggest problem results
from the fact ﬂhat simple equation solving can no longer be
used to discriminate between rules, as such equations tend
to contain too many uninstantiated terms. A higher 1eve1.of

reasoning is required for some sort of equation analysis.

Aspects of this an: ¢sis will resemble the more classical
techniques of discrete planning, such as regression ([Wal77]
and nonlinear and hierarchical planning (Sac77]. This
research is currently in progress, and 1is reported on in

[sal81].

The methodology presented in this paper is an attempt

to wutilize the power of rule based systems in a design for

symbolic worid modeling, and a characterization of the
requirements for applying such systems to problem domains
“ which contain a continuous parameter, such as time. Our
success with applying preliminary implementations of CONCUR
to various different examples leads us to believe that the
technique of embedding time wused here is appropriate for

expressing the dynamic evolution of these models.
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INITIAL DATABASE

(TYPE ROERY ROBOT) (TYPE PAIL BUCKET)

(AT RORRY 5) (GATO ROIBRY 10 2)
(GRASF ROBRY PAIL) (AT PAIL 8)

(FILL ROBRY PAIL VALVE 10 50) (AT VALVE 10)
(CAPACITY PAIL 200) (CONTENTS PATL 25)

(RELEASE ROBBY PAIL 10)
EVENT SCENARIOS

SCENARIO GOTOD

Init. Conds.: (GOTO =ROBOT =B =SPEED) (TYFE #*ROBOT ROEOT) (AT #ROBOT =A)

Delete: (GOTO #ROROT #B #SPEENR)
Subst: (AT #ROBOT (!# (PLUS (MUL *SFEED (DIF TIME #TIME)) #A))
Continue When: (AT #ROBAT #R)

Subst: (AT #ROBOT 77)

SCENARIO TLRN

Init. Conds.? (TURN =RORCOT =V =R) (TYFE #ROBCGT ROBOT) (AT #ROBOT =L0OC)
(AT #V #L0C)

Delete: (TURN #ROBOT #V #R)

Add: (RATE *V #R)

SCENARIO FILL

Init. Conds.: (FILL =ROBOT =RUCKET =V =L0C =R) (TYFE #ROROT ROBOT)
(TYPE #BUCKET BUCKET) (AT #RORBOT %L0OC) (AT #BUCKET #L.0C)
(AT #V #L0OC) (CAPACITY #BUCKET =CAP) (CONTENTS #BUCKET =CON))

Delete: (FILL #ROBROT #BUCKET #V #L0OC #R)
Add: (TURN #ROBROT #V #R)
Continue Whens (RATE #V #R)
Subst: (CONTENTS #RUCKET
(i% (PLUS (# (CONTENTS #BUCKET _))
(MUL #R (DOIF TIME #TIME))))
Continue When? (!% (EQ (CONTENTS #BUCKET .) CAFP))
Delete: (RATE #V #R)
Add: (RATE #V Q)

Subst:? (CONTENTS #BUCKET ?7)

Fidyre 1 - CONCUR Robot-Rucket World
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SCENARIO GRASP

Init. Conds.: (GRASP =ROBOT =0BJ) (AT #ROBOT =L0OC) (AT #0BJ #LOC)

Delete: {GRASP #ROBRDOT #0R.1)
Add: (GRASPING #ROROT #0OBRJ)
- Subst: (AT #0BJ (~# (AT #RIBOT _)))

SCENARID GRASPWATCH

Init. Conds.: (ORASPING =ROBOT =0BJ) (AT #ROBOT =L0OC1) (AT #0B.J =LOCZ)
(\ (% (EQ™ LOC1 LOC2))) .

Delete: (AT #0OR.I ?7?)

Add: (AT #0OBJ (*# (AT #ROBOT _.)))

SCENARIC RELEASE

Init. Conds.: (RELEASE =ROROT =0BJ =X) (GRASPING #RORIT #0B1) (AT #ROBOT #X))
Delete: (GRASPING #ROBOT #0H.1)

(RELEASE #ROBOT #0R.D #X))
Subst: (AT *0OBJI 77)

Fisure 1 — CONCUR Robot-Bucket World
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INITIAL DATABASE

(AT SPRING1 1) (ACCEL SPRINGI 0)
(VELC SPRING1 0) (ADJ-ACC SPRING1)

EVENT SCENARIOS
SCENARIO SPRING-MOVE

Init. Conds.: (AT =SFRING =L.0C) (ACCEL #SPRING =A) (VELO #SPRING =V)
(ADJ-LDOC #SPRING)

Delete: (ADJ-LOC #SPRING)
(AT #SPRING #L0C)
Add: (AT #SFPRING

1 (FPLUS #LOC
(FPLUS (MUL #V (SUR TIME ®*TIME))
(DIV (MUL #A
(MUL (SR TIME #TIME)
(SUB TIME *TIME)))
2)))))
Continue When: (1% (EQ TIME (PLUS #TIME 0.1)))
Add: (ALJ-ACT #SPRING)

SCENARICQ SPRING-ACLCEL

Init. Conds.: (AT =SPRING =LQC) (ACCEL #SFRING =A) (VELO #SPRING =V)
» (ADJ-ACC #SFPRING)
Delete: (ADJ-ACC #SPRING))
) (ACCEL #SPRING #A)
(VELO #SFRING #V)
Add: - (ACCEL #SPRING (% (MINUS LOC))))
(VELQ #SPRING (1# (FPLUS #V (MUL (% (MINUS LOC))
(SUB TIME #TIME)))))
(ADJ-LOC #SPRING)

Fisure 2 - Sprine World
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